Spike coding from the perspective of a neurone

2005 
In this paper, we compare existing methods for quantifying the coding capacity of a spike train, and review recent developments in the application of information theory to neural coding. We present novel methods for characterising single-unit activity based on the perspective of a downstream neurone and propose a simple yet universally applicable framework to characterise the order of complexity of neural coding by single units. We establish four orders of complexity in the capacity for neural coding. First-order coding, quantified by firing rates, is conveyed by frequencies and is thus entirely described by first moment processes. Second-order coding, represented by the variability of interspike intervals, is quantified by the log interval entropy. Third-order coding is the result of spike motifs that associate adjacent inter-spike intervals beyond chance levels; it is described by the joint interval histogram, and is measured by the mutual information between adjacent log intervals. Finally, nonstationarities in activity represent coding of the fourth-order that arise from the effects of a known or unknown stimulus.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    130
    References
    21
    Citations
    NaN
    KQI
    []