Spatial cell firing during virtual navigation of open arenas by head-restrained mice

2018 
We present a mouse virtual reality (VR) system which restrains head-movements to horizontal rotations, potentially compatible with multi-photon imaging. We show that this system allows expression of the spatial navigational behaviour and neuronal firing patterns characteristic of real open arenas (R). Place and grid, but not head-direction, cell firing had broader spatial tuning in VR than R. Theta frequency increased less with running speed in VR than in R, while firing rates increased similarly in both. Place, but not grid, cell firing was more directional in VR than R. These results suggest that the scale of grid and place cell firing patterns, and the frequency of theta, reflect translational motion inferred from both virtual (visual and proprioceptive) cues and uncontrolled static (vestibular translation and extra-maze) cues, while firing rates predominantly reflect visual and proprioceptive motion. They also suggest that omni-directional place cell firing in R reflects local cues unavailable in VR.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    1
    Citations
    NaN
    KQI
    []