Business Models for Carbon Capture, Utilization and Storage Technologies in the Steel Sector: A Qualitative Multi-Method Study

2020 
Carbon capture, utilization, and storage (CCUS) is a combination of technologies capable of achieving large-scale reductions in carbon dioxide emissions across a variety of industries. Its application to date has however been mostly limited to the power sector, despite emissions from other industrial sectors accounting for around 30% of global anthropogenic CO2 emissions. This paper explores the challenges of and requirements for implementing CCUS in non-power industrial sectors in general, and in the steel sector in particular, to identify drivers for the technology’s commercialization. To do so we first conducted a comprehensive literature review of business models of existing large-scale CCUS projects. We then collected primary qualitative data through a survey questionnaire and semi-structured interviews with global CCUS experts from industry, academia, government, and consultancies. Our results reveal that the revenue model is the most critical element to building successful CCUS business models, around which the following elements are structured: funding sources, capital & ownership structure, and risk management/allocation. One promising mechanism to subsidize the additional costs associated with the introduction of CCUS to industry is the creation of a ‘low-carbon product market’, while the creation of clear risk-allocation systems along the full CCUS chain is particularly highlighted. The application of CCUS as an enabling emission reduction technology is further shown to be a factor of consumer and shareholder pressures, pressing environmental standards, ethical resourcing, resource efficiency, and first-mover advantages in an emerging market. This paper addresses the knowledge gap which exists in identifying viable CCUS business models in the industrial sector which, with the exception of a few industry reports, remains poorly explored in the academic literature.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    106
    References
    2
    Citations
    NaN
    KQI
    []