A Two-Step Compressed Sensing Approach for Single-Snapshot DOA Estimation of Closely Spaced Signals

2021 
Single-snapshot direction-of-arrival (DOA) estimation plays an important role in dynamic target detection and tracking applications. Because a single-snapshot signal provides few information for statistics calculation, recently compressed sensing (CS) theory is applied to solve single-snapshot DOA estimation, instead of the traditional DOA methods based on statistics. However, when the unknown sources are closely located, the spatial signals are highly correlated, and its overcomplete dictionary is made up of dense grids, which leads to a serious decrease in the estimation accuracy of the CS-based algorithm. In order to solve this problem, this paper proposed a two-step compressed sensing-based algorithm for the single-snapshot DOA estimation of closely spaced signals. The overcomplete dictionaries with coarse and refined grids are used in the two steps, respectively. The measurement matrix is constructed by using a very sparse projection scheme based on chaotic sequences because chaotic sequences have determinism and pseudo-randomness property. Such measurement matrix is mainly proposed for compressing the overcomplete dictionary in preestimation step, while it is well designed by choosing the steering vectors of true DOA in the accurate estimation step, in which the neighborhood information around the true DOAs partly solved in the previous step will be used. Monte Carlo simulation results demonstrate that the proposed algorithm can perform better than other existing single-snapshot DOA estimation methods. Especially, it can work well to solve the issues caused by closely spaced signals and single snapshot.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    0
    Citations
    NaN
    KQI
    []