Multicolor Output from 2D Hybrid Perovskites with Wide Band Gap: Highly Efficient White Emission, Dual-Color Afterglow, and Switch between Fluorescence and Phosphorescence.

2021 
Herein, an organic fluorophore termed NLAC is introduced into 2D hybrid perovskites with wide band gap (>3.54 eV) to give a green emission with quantum yield up to 81%. The highly efficient luminescence is ascribed to avoiding the aggregation of NLAC and formation of an inorganic free exciton which is easy to thermally quench. On this basis, a new strategy to generate efficient white emission with afterglow has been proposed by codoping a short-wavelength fluorophore and long-wavelength phosphor into 2D organic-inorganic hybrid perovskites (OIHPs). As a result, a single-component white-light-emitting material PEPC-3N based on NLAC with CIE of (0.33, 0.36) and quantum yield up to 43% can be obtained. Interestingly, PEPC-3N shows a dual-color organic afterglow and excitation-wavelength-dependent emission, consequently forming a switch between green fluorescence and yellow afterglow. This unique performance indicates PEPC-3N has huge potential in afterglow WLEDs and information storage.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    5
    Citations
    NaN
    KQI
    []