Large field of view-spatially resolved transcriptomics at nanoscale resolution

2021 
High-throughput profiling of in situ gene expression represents a major advance towards the systematic understanding of tissue complexity. Applied with enough capture area and high sample throughput it will help to define the spatio-temporal dynamics of gene expression in tissues and organisms. Yet, current technologies have considerable bottlenecks that limit widespread application. Here, we have combined DNA nanoball (DNB) patterned array chips and in situ RNA capture to develop Stereo-seq (Spatio-Temporal Enhanced REsolution Omics-sequencing). This approach allows high sample throughput transcriptomic profiling of histological sections at unprecedented (nanoscale) resolution with areas expandable to centimeter scale, high sensitivity and homogenous capture rate. As proof of principle, we applied Stereo-seq to the adult mouse brain and sagittal sections of E11.5 and E16.5 mouse embryos. Thanks to its unique features and amenability to additional modifications, Stereo-seq can pave the way for the systematic spatially resolved-omics characterization of tissues and organisms.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    87
    References
    23
    Citations
    NaN
    KQI
    []