A probabilistic recurrent neural network for decoding hind limb kinematics from multi-segment recordings of the dorsal horn neurons

2019 
OBJECTIVE: Providing accurate and robust estimates of limb kinematics from recorded neural activities is prominent in closed-loop control of functional electrical stimulation (FES). A major issue in providing accurate decoding the limb kinematics is the decoding model. The primary goal of this study is to develop a decoding approach to model the dynamic interactions of neural systems for accurate decoding. Another critical issue is to find reliable recording sites. Up to now, neural recordings from spinal neural activities were investigated. In this paper, the neural recordings from different vertebrae in decoding limb kinematics are investigated. APPROACH: In the current study, a new generative probabilistic model with explicit considering the joint density is developed. Then, an adaptive discriminative learning algorithm is proposed for learning the model. It will be shown that the proposed generative process can be implemented by a recurrent neural network (RNN) with specific structure. We record the neural activities from dorsal horn neurons by using three electrodes placed in the L4, L5, and L6 vertebrae in anesthetized cats. MAIN RESULTS: Information theoretic analysis on single-joint movement and multi-segment recordings implies the rostrocaudal distribution of kinematic information. It is demonstrated that during hip movement, best decoding performance is achieved by L4 recordings. For knee and ankle movements, best decodings are achieved by L5, and L6 recordings respectively. It is also shown that the decoding accuracy using multi-segment recordings outperforms decoding accuracy obtained by single-segment recording in multi-joint movement. The results also confirm the superiority of the proposed probabilistic recurrent neural network (PRNN) over the conventional recurrent neural network and Kalman filter ([Formula: see text]). SIGNIFICANCE: Multi-segment recordings from dorsal horn neurons as well as the proposed probabilistic recurrent network model provide a promising approach for robust and accurate decoding limb kinematics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    2
    Citations
    NaN
    KQI
    []