Pulse shortening of an ultrafast VECSEL

2016 
Ultrafast, optically pumped, passively modelocked vertical external-cavity surface-emitting lasers (VECSELs) are excellent sources for industrial and scientific applications that benefit from compact semiconductor based high-power ultrafast lasers with gigahertz repetition rates and excellent beam quality. Applications such as self-referenced frequency combs and multi-photon imaging require sub-200-fs pulse duration combined with high pulse peak power. Here, we present a semiconductor saturable absorber mirror (SESAM) modelocked VECSEL with a pulse duration of 147 fs and 328 W of pulse peak power. The average output power was 100 mW with a repetition rate of 1.82 GHz at a center wavelength of 1034 nm. The laser has optimal beam quality operating in a fundamental transverse mode with a M 2 value of <1.05 in both orthogonal directions. The VECSEL was grown by metal-organic vapor phase epitaxy (MOVPE) with five pairs of strain-compensated InGaAs quantum wells (QWs). The QWs are placed symmetrical around the antinodes of the standing electric field at a reduced average field enhancement in the QWs of ≈ 0.5 (normalized to 4 outside the structure). These results overcome the trade-off between pulse duration and peak power of the state-of-the-art threshold values of 4.35 kW peak power for a pulse duration of 400 fs and 3.3 W peak power for a pulse duration of 107 fs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    3
    Citations
    NaN
    KQI
    []