Effects of clay in a sandy soil on saturated/unsaturated pore water flow and dissolved chloride transport from road salt applications.

2021 
Saturated/unsaturated pore water flow induced by rainwater infiltration in a soil column composed of a mixture of Toyoura sand and a small amount of clay (kaolin minerals) and the rinsing rate (mass transfer) of dissolved NaCl accumulated in the pore system from previous road salt application were investigated by experiments and simulations. Experiments were conducted with variable kaolin minerals mass contents (mixing ratios) in the soil columns. Measured saturated hydraulic conductivity (Ks) diminished with increased clay contents, i.e., Ks=0.00771, 0.00560, 0.00536, 0.00519, and 0.00314 cm s-1, for clay contents = 0.2, 0.5, 1, 2, and 5%, respectively. Experimental NaCl concentrations in the effluent from the bottom of the soil columns were about constant for times t ≈ 800, 1200, 1300, 1400, and 3400 s from the beginning of a rinsing experiment for the clay contents = 0.2, 0.5, 1, 2, and 5%, respectively. These NaCl concentrations then decreased with time quickly, and finally, approached zero. The presented model can reproduce experimental time variations of NaCl concentration in the effluent from the soil column reliably. Simulated salt mass left in the soil column with time also matches the experimental results for the clay contents = 0.2 and 0.5%. An inconsistency between simulated and experimental salt mass left in the soil columns becomes more significant as the clay content increases. These results suggest that the soil-water retention curve for the pure Toyoura sand can be applied to the soil column composed of kaolin minerals/Toyoura sand mixture when the clay content is small, i.e., less than 1%. Prediction of rinsing process becomes more difficult with increased clay content. However, the time required to remove saline water from the soil column to less than 1% of its initial value simulated by the model agrees closely with experimental results of 1000, 1500, 1700, 2100, and 5400 s, respectively.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    1
    Citations
    NaN
    KQI
    []