Comparative transcriptome analysis reveals gene network regulation of TGase-induced thermotolerance in tomato

2021 
Transglutaminase (TGase), the ubiquitous protein in plants, catalyzes the post-translational transformation of proteins and plays a vital role in photosynthesis. However, its role and mechanism in tomato subjected to heat stress still remain unknown. Here, we carried out a transcriptomic assay to compare the differentially expressed genes (DEGs) between wild type (WT) and TGase overexpression (TGaseOE) plants employed to high-temperature at 42 °C and samples were collected after 0, 6, and 12 h, respectively. A total of 11,516 DEGs were identified from heat-stressed seedlings, while 1,148 and 1,353 DEGs were up-and down-regulated, respectively. The DEGs upon high-temperature stress were closely associated with the pathways encompassing protein processing in the endoplasmic reticulum, carbon fixation, and photosynthetic metabolism. In addition, 425 putative transcription factors (TFs) were identified, and the majority of them associated with the bHLH, HSF, AP2/ERF, MYB, and WRKY families. RNA-seq data validation further confirmed that 8 genes were linked to protein processing and photosynthesis, and the mRNA level of these genes in TGaseOE was higher than that in WT plants, which is consistent in transcriptome results. In conclusion, these results reveal the transcriptional regulation between WT and TGaseOE in tomato under heat stress and shed light on a new dimension of knowledge of TGase-mediated thermotolerance mechanism at the molecular level.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    1
    Citations
    NaN
    KQI
    []