fMRI data processing in MRTOOL: to what extent does anatomical registration affect the reliability of functional results?

2018 
Spatial registration is an essential step in the analysis of fMRI data because it enables between-subject analyses of brain activity, measured either during task performance or in the resting state. In this study, we investigated how anatomical registration with MRTOOL affects the reliability of task-related fMRI activity. We used as a benchmark the results from two other spatial registration methods implemented in SPM12: the Unified Segmentation algorithm and the DARTEL toolbox. Structural alignment accuracy and the impact on functional activation maps were assessed with high-resolution T1-weighted images and a set of task-related functional volumes acquired in 10 healthy volunteers. Our findings confirmed that anatomical registration is a crucial step in fMRI data processing, contributing significantly to the total inter-subject variance of the activation maps. MRTOOL and DARTEL provided greater registration accuracy than Unified Segmentation. Although DARTEL had superior gray matter and white matter tissue alignment than MRTOOL, there were no significant differences between DARTEL and MRTOOL in test–retest reliability. Likewise, we found only limited differences in BOLD activation morphology between MRTOOL and DARTEL. The test–retest reliability of task-related responses was comparable between MRTOOL and DARTEL, and both proved superior to Unified Segmentation. We conclude that MRTOOL, which is suitable for single-subject processing of structural and functional MR images, is a valid alternative to other SPM12-based approaches that are intended for group analysis. MRTOOL now includes a normalization module for fMRI data and is freely available to the scientific community.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    1
    Citations
    NaN
    KQI
    []