Experimental Benchmarking of Quantum Control in Zero-Field Nuclear Magnetic Resonance

2017 
Zero-field nuclear magnetic resonance (NMR) provides complementary analysis modalities to those of high-field NMR and allows for ultra-high-resolution spectroscopy and measurement of untruncated spin-spin interactions. Unlike for the high-field case, however, universal quantum control -- the ability to perform arbitrary unitary operations -- has not been experimentally demonstrated in zero-field NMR. This is because the Larmor frequency for all spins is identically zero at zero field, making it challenging to individually address different spin species. We realize a composite-pulse technique for arbitrary independent rotations of $^1$H and $^{13}$C spins in a two-spin system. Quantum-information-inspired randomized benchmarking and state tomography are used to evaluate the quality of the control. We experimentally demonstrate single-spin control for $^{13}$C with an average gate fidelity of $0.9960(2)$ and two-spin control via a controlled-not (CNOT) gate with an estimated fidelity of $0.99$. The combination of arbitrary single-spin gates and a CNOT gate is sufficient for universal quantum control of the nuclear spin system. The realization of complete spin control in zero-field NMR is an essential step towards applications to quantum simulation, entangled-state-assisted quantum metrology, and zero-field NMR spectroscopy.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []