Matter-Wave Diffraction from a Periodic Array of Half Planes

2019 
: We report on reflection and diffraction of beams of He and D_{2} from square-wave gratings of a 400-μm period and strip widths ranging from 10 to 200  μm at grazing-incidence conditions. In each case we observe fully resolved matter-wave diffraction patterns including the specular reflection and diffracted beams up to the second diffraction order. With decreasing strip width, the observed diffraction efficiencies exhibit a transformation from the known regime of quantum reflection from the grating strips to the regime of edge diffraction from a half-plane array. The latter is described by a single-parameter model developed previously to describe phenomena as diverse as quantum billiards, scattering of radio waves in urban areas, and reflection of matter waves from microstructures. Our data provide experimental confirmation of the widespread model. Moreover, our results demonstrate that neither classical reflection nor quantum reflection are essential for reflective diffraction of matter waves from a structured solid, but it can result exclusively from half-plane edge diffraction.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    3
    Citations
    NaN
    KQI
    []