A revised density split statistic model for general filters

2021 
Studying the statistical properties of the large-scale structure in the Universe with weak gravitational lensing is a prime goal of several current and forthcoming galaxy surveys. The power that weak lensing has to constrain cosmological parameters can be enhanced by considering statistics beyond second-order shear correlation functions or power spectra. One such higher-order probe that has proven successful in observational data is the density split statistics (DSS), in which one analyses the mean shear profiles around points that are classified according to their foreground galaxy density. In this paper, we generalise the most accurate DSS model to allow for a broad class of angular filter functions used for the classification of the different local density regions. This approach is motivated by earlier findings showing that an optimised filter can provide tighter constraints on model parameters compared to the standard top-hat case. We build on large deviation theory approaches and approximations thereof to model the matter density PDF, and on perturbative calculations of higher-order moments of the density field. The novel addition relies on the generalisation of these previously employed calculations to allow for general filter functions and is validated on several sets of numerical simulations. The revised model fits well the simulation measurements, with a residual systematic offset that is small compared to the statistical accuracy of current weak lensing surveys. The accuracy of the model is slightly lower for a compensated filter than for a non-negative filter function, and that it increases with the filter size. Using a Fisher matrix approach, we find constraints comparable to the commonly used two-point cosmic shear measures. Hence, our DSS model can be used in competitive analyses of current cosmic shear data, while it may need refinements for forthcoming lensing surveys.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    0
    Citations
    NaN
    KQI
    []