Dacomitinib, a new pan-EGFR inhibitor, is effective in attenuating pulmonary vascular remodeling and pulmonary hypertension

2019 
Abstract Accumulating evidence suggests that epidermal growth factor receptor (EGFR) plays a role in the progression of pulmonary arterial hypertension (PAH). Clinically-approved epidermal growth factor inhibitors such as gefitinib, erlotinib, and lapatinib have been explored for PAH . However, None of them were able to attenuate PAH . So, we explored the role of dacomitinib, a new pan-EGFR inhibitor, in PAH. Adult male Sprague–Dawley rats were used to study hypoxia- or monocrotaline-induced right ventricular remodeling as well as systolic function and hemodynamics using echocardiography and a pressure-volume admittance catheter. Morphometric analyses of lung vasculature and pressure-volume vessels were performed. Immunohistochemical staining, flow cytometry, and viability, as well as scratch-wound, and Boyden chamber migration assays were used to identify the roles of dacomitinib in pulmonary artery smooth muscle cells (PASMCs). The results revealed that dacomitinib has a significant inhibitory effect on the thickening of the media, adventitial collagen increased. Dacomitinib also has a significant role in attenuating pulmonary artery pressure and right ventricular hypertrophy. Additionally, dacomitinib inhibits hypoxia-induced proliferation, migration, autophagy and cell cycle progression through PI3K-AKT-mTOR signaling in PASMCs. Our study indicates that dacomitinib inhibited hypoxia-induced cell cycle progression, proliferation, migration, and autophagy of PASMCs, thereby attenuating pulmonary vascular remodeling and development of PAH via the PI3K-AKT-mTOR signaling pathway. Overall, dacomitinib may serve as new potential therapeutic for the treatment of PAH.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    13
    Citations
    NaN
    KQI
    []