Interference effects due to nuclear motion of the hydrogen molecule

2018 
We show that two-particle interferences can be used to probe the nuclear motion in a doubly-excited hydrogen molecule. The dissociation of molecular hydrogen by electron impact involves several decay channels, associated to different molecular rotational states, which produce quantum interferences in the detection of the atomic fragments. Thanks to the correlations between the angular momentum and vibrational states of the molecule, the fragments arising from each dissociation channel carry out a phase-shift which is a signature of the molecule rotation. These phase-shifts, which cannot be observed in a single-atom detection scheme, may be witnessed in realistic experimental conditions in a time-of-flight coincidence measurement. We analyse the interferences arising from the two lowest-energy rotational states of a para-hydrogen molecule. Our result shows the relevance of two-fragments correlations to track the molecular rotation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    1
    Citations
    NaN
    KQI
    []