Nutrient Recycling, Wheat Straw Decomposition, and the Potential Effect of Straw Shear Strength on Soil Mechanical Properties

2020 
This study aimed to explore the release rate (RR) of wheat straw nutrients during straw return to a paddy field and examined the possible relationship between wheat stalk shear strength and the content of the remaining components in wheat straw. We used the nylon mesh bag technique to study the decomposition of straw nutrients such as total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP), total potassium (TK), lignin, and cellulose over time. During the time span of 0–90 days, results showed a rapid decomposition rate with a diverse trend under different tillage operations. Furthermore, the decomposition rate was higher under the plough (PRP) conditions than under dry conditions (RP) or water rotation (PR). Moreover, under PRP conditions, the RR of TOC, TK, lignin, and cellulose increased, while the RR of TK was higher than 95% initially and then increased slightly. However, the carbon to nitrogen ratio was first increased and then decreased; similarly the RR of TP first increased and then decreased; a fluctuating pattern was observed for TN. Additionally, we found a strong correlation between wheat stalk shear strength and the remaining contents of lignin, hemicellulose, and cellulose, with R2 ≥ 0.91, which was higher than 0.82 after computing adjustments. Furthermore, the changing trend of nutrients and components and the relationship between shear strength and the content of the remaining components in wheat straw were used to evaluate the release characteristics of nutrients under straw return. The potential effects of the straw shear strength on soil mechanical properties were determined, providing a remarkable opportunity for acquiring nutrients for sustainable application of soil.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    3
    Citations
    NaN
    KQI
    []