Nanozyme Sensor Array Plus Solvent-Mediated Signal Amplification Strategy for Ultrasensitive Ratiometric Fluorescence Detection of Exosomal Proteins and Cancer Identification.

2021 
Tumor exosomes with molecular marker-proteins inherited from their parent cells have emerged as a promising liquid biopsy biomarker for cancer diagnosis. However, facile, robust, and sensitive detection of exosomal proteins remains challenging. Therefore, a nanozyme sensor array is constructed by using aptamer-modified C3N4 nanosheets (Apt/C3N4 NSs) together with a solvent-mediated signal amplification strategy for ratiometric fluorescence detection of exosomal proteins. Three aptamers specific to exosomal proteins are selected to construct Apt/C3N4 NSs for high specific recognition of exosomal proteins. The adsorption of aptamers enhances the catalytic activity of C3N4 NSs as a nanozyme for oxidation of o-phenylenediamine (oPD) to 2,3-diaminophenazine (DAP). In the presence of target exosomes, the strong affinity between aptamer and exosome leads to the disintegration of Apt/C3N4 NSs, resulting in a decrease of catalytic activity, thereby reducing the production of DAP. The ratiometric fluorescence signal based on a photoinduced electron transfer (PET) effect between DAP and C3N4 NSs is dependent on the concentration of DAP generated, thus achieving highly facile and robust detection of exosomal proteins. Remarkably, the addition of organic solvent-1,4-dioxane can sensitize the luminescence of DAP without affecting the intrinsic fluorescence of C3N4 NSs, achieving the amplification of the aptamer-exosome recognition events. The detection limit for exosome is 2.5 × 103 particles/mL. In addition, the accurate identification of cancer can be achieved by machine learning algorithms to analyze the difference of exosomal proteins from different patients' blood. We hope that this facile, robust, sensitive, and versatile nanozyme sensor array would become a promising tool in the field of cancer diagnosis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    0
    Citations
    NaN
    KQI
    []