Endotoxin promotes neutrophil hierarchical chemotaxis via the p38-membrane receptor pathway.

2016 
// Xu Wang 1 , Weiting Qin 1 , Yisen Zhang 1 , Huafeng Zhang 1 , Bingwei Sun 1 1 Department of Burn and Plastic Surgery, Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu Province, China Correspondence to: Bingwei Sun, email: sunbinwe@hotmail.com Keywords: neutrophil, endotoxin, chemotaxis, membrane receptor, p38 Received: August 02, 2016     Accepted: September 10, 2016     Published: September 17, 2016 ABSTRACT Neutrophils are the most abundant leukocytes in peripheral blood and play critical a role in bacterial infection, tumor immunity and wound repair. Clarifying the process of neutrophil chemotaxis to target sites of immune activity has been a focus of increased interest within the past decade. In bacterial infectious foci, neutrophils migrate toward the bacterial-derived chemoattractant N-formyl-Met-Leu-Phe (fMLP) and ignore other intermediary chemoattractants to arrive at the area of infection. Using an under agarose chemotaxis assay, we observed that the bacterial fMLP-induced neutrophil chemotaxis signal overrode interleukin 8 (IL-8)- and leukotriene B4 (LTB4)-induced chemotaxis signals. Moreover, in the presence of bacterial lipopolysaccharide (LPS), the fMLP-induced hierarchical chemotaxis signal was enhanced. Further studies revealed that LPS increased the membrane expression of the fMLP receptor, formyl peptide receptor 1 (FPR1). However, expression levels of the membrane receptors for IL-8 and LTB4 were decreased by LPS administration. A human Phospho-mitogen-activated protein kinase (MAPK) proteome array showed that the p38 pathway was significantly activated by LPS stimulation. Moreover, p38 was responsible for the altered expression of neutrophil membrane chemoattractant receptors. Inhibition of neutrophil p38 restored LPS-improved hierarchical chemotaxis. Taken together, these data indicate that endotoxin promotes neutrophil hierarchical chemotaxis via the p38-membrane receptor pathway.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    11
    Citations
    NaN
    KQI
    []