Effect of the Active Region and Waveguide Design on the Performance of Edge-Emitting Lasers Based on InGaAs/GaAs Quantum Well-Dots

2021 
Edge-emitting lasers with active regions based on novel InGaAs/GaAs quantum heterostructures of transitional dimensionality, i.e., quantum well-dots, which are intermediate in properties between quantum wells and quantum dots, are studied. It is shown that the rate of the lasing-wavelength blue shift decreases with increasing number of quantum well-dot layers in the active region and with increasing optical confinement factor as the cavity length decreases. In a laser with 10 quantum well-dot layers, the lasing-wavelength position remains within the limits of the fundamental optical transition down to the smallest cavity lengths (100 μm). In devices with a single quantum well-dot layer and/or with a low optical confinement factor, lasing directly switches from the ground state to waveguide states omitting excited states below ≤200 μm. Such an effect has not been observed in quantum-well- and quantum-dot lasers and can be attributed to the abnormally low density of excited states in quantum well-dots.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    0
    Citations
    NaN
    KQI
    []