Different thermal conditions of lakes affect host–parasite systems: A case study of Viviparus contectus (Millet, 1813) and digenean trematodes

2019 
Thermal disturbance of aquatic ecosystems directly and/or indirectly affects interspecific interactions, including parasitism. Both hosts and parasites respond differently to environmental changes, thus, predicting how host–parasite systems behave under the influence of disturbance remains a challenge. The aim of the study was to check how the differences in thermal conditions of lakes affect life‐history traits of hosts and the level of parasitism, using a Viviparus contectus–digenean trematodes model. Overall, we examined 480 individuals of V. contectus collected from a thermally polluted lake (TPL) and a natural lake (NL). Host features, including body size and fecundity, as well as the prevalence and species richness of digenean trematodes in snail populations were investigated. We found that V. contectus from the TPL were significantly larger, heavier, and females were more fertile than snails collected from the NL. A total of 20.4% of the collected snails were infected with digenean larvae. The species richness of parasites was twice as high in the NL compared to the TPL (six and three species, respectively). A significant difference in the percentage of snails infected with parasites was identified between both types of lakes, with a higher prevalence of V. contectus in the NL (31.3%) compared to the TPL (7.3%). These results indicate that host–parasite systems follow the environmental changes in lakes due to thermal pollution by increasing fertility and metabolism rate of viviparid hosts and by decreasing the prevalence and diversity of digenean trematodes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    66
    References
    2
    Citations
    NaN
    KQI
    []