Anisotropic superconductivity and frozen electronic states at the (111) LaAlO 3 / SrTiO 3 interface

2018 
In spite of Anderson's theorem, disorder is known to affect superconductivity in conventional s-wave superconductors. In most superconductors, the degree of disorder is fixed during sample preparation. Here we report measurements of the superconducting properties of the two-dimensional gas that forms at the interface between LaAlO$_3$ (LAO) and SrTiO$_3$ (STO) in the (111) crystal orientation, a system that permits \emph{in situ} tuning of carrier density and disorder by means of a back gate voltage $V_g$. Like the (001) oriented LAO/STO interface, superconductivity at the (111) LAO/STO interface can be tuned by $V_g$. In contrast to the (001) interface, superconductivity in these (111) samples is anisotropic, being different along different interface crystal directions, consistent with the strong anisotropy already observed other transport properties at the (111) LAO/STO interface. In addition, we find that the (111) interface samples "remember" the backgate voltage $V_F$ at which they are cooled at temperatures near the superconducting transition temperature $T_c$, even if $V_g$ is subsequently changed at lower temperatures. The low energy scale and other characteristics of this memory effect ($<1$ K) distinguish it from charge-trapping effects previously observed in (001) interface samples.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    12
    Citations
    NaN
    KQI
    []