Phenotyping the Microvasculature in Critical-Sized Calvarial Defects via Multimodal Optical Imaging

2018 
Tissue-engineered scaffolds are a powerful means of healing craniofacial bone defects arising from trauma or disease. Murine models of critical-sized bone defects are especially useful in understanding the role of microenvironmental factors such as vascularization on bone regeneration. Here, we demonstrate the capability of a novel multimodality imaging platform capable of acquiring in vivo images of microvascular architecture, microvascular blood flow, and tracer/cell tracking via intrinsic optical signaling (IOS), laser speckle contrast (LSC), and fluorescence (FL) imaging, respectively, in a critical-sized calvarial defect model. Defects that were 4 mm in diameter were made in the calvarial regions of mice followed by the implantation of osteoconductive scaffolds loaded with human adipose-derived stem cells embedded in fibrin gel. Using IOS imaging, we were able to visualize microvascular angiogenesis at the graft site and extracted morphological information such as vessel radius, length, and tortuosit...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []