Mid-latitude mixed-phase stratocumulus clouds and their interactions with aerosols: how ice processes affect microphysical, dynamic and thermodynamic development in those clouds and interactions?

2021 
Abstract. Mid-latitude mixed-phase stratocumulus clouds and their interactions with aerosols remain poorly understood. This study examines the roles of ice processes in those clouds and interactions using a large-eddy simulation (LES) framework. Cloud mass becomes much lower in the presence of ice processes and the Wegener-Bergeron-Findeisen (WBF) mechanism in the mixed-phase clouds as compared to that in warm clouds. This is because while the WBF mechanism enhances the evaporation of droplets, the low concentration of aerosols as ice nuclei (IN) and cloud ice number concentration (CINC) prevent the efficient deposition of water vapor whose mass is contributed by the evaporation. In the mixed-phase clouds, the increasing concentration of aerosols that act as cloud condensation nuclei (CCN) decreases cloud mass by increasing the evaporation of droplets through the WBF mechanism and decreasing the intensity of updrafts. In contrast to this, in the warm clouds, the absence of the WBF mechanism makes the increase in the evaporation of droplets inefficient, eventually enabling cloud mass to increase with the increasing concentration of aerosols as CCN. Here, the results show that when there is an increasing concentration of aerosols that act as IN, the deposition of water vapor is more efficient than when there is the increasing concentration of aerosols as CCN, which in turn enables cloud mass to increase in the mixed-phase clouds.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    0
    Citations
    NaN
    KQI
    []