Preparation and electrical properties of sintered bodies composed of CrXMn1.5Co(1.0-X)Ni0.5O4 (0 ≦ X ≦ 0.42) with a cubic spinel structure

2016 
Preparation and electrical properties of sintered bodies consisting of monophase cubic spinel oxides, CrXMn1.5Co(1.0-X)Ni0.5O4 (0 ≦ X ≦ 0.42), were investigated. Specimens with compositions within X = 0.42 were prepared as starting materials. The element of Cr was used to exchange Co3+ in octahedral sites (B sites) with Cr3+ so that the hopping mechanism can be discussed. The sintered bodies with mono cubic spinel structure were confirmed to be prepared by heat-treatment for 48 h in air at 1000 °C to convert them into a cubic spinel structure after sintering at 1400 °C. The semiconductive characteristics of the sintered bodies were determined as p-type because the Seebeck coefficients were all positive. The electrical conduction of the sintered bodies was concluded to be controlled by the small polaron hopping mechanism. In the region 0.1 ≦ X ≦ 0.42, the lattice constant increases and electrical conduction (σ) decreases linearly with increasing Cr concentration. The decrease in σ and the increase in the lattice constant corresponded to the increase in Cr concentration by which the jumping distance of electrons between Mn3+ and Mn4+ is lengthened.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    0
    Citations
    NaN
    KQI
    []