Finding perfect rendezvous on the go: accurate mobile visual localization and its applications to routing

2012 
While on the go, more and more people are using their phones to enjoy ubiquitous location-based services (LBS). One of the fundamental problems of LBS is localization. Researchers are now investigating ways to use a phone-captured image for localization as it contains more scene context information than the embedded sensors. In this paper, we present a novel approach to mobile visual localization that accurately senses geographic scene context according to the current image (typically associated with a rough GPS position). Unlike most existing visual localization methods, the proposed approach is capable of providing a complete set of more accurate parameters about the scene geo---including the actual locations of both the mobile user and perhaps more importantly the captured scene along with the viewing direction. Our approach takes advantage of advanced techniques for large-scale image retrieval and 3D model reconstruction from photos. Specifically, we first perform joint geo-visual clustering in the cloud to generate scene clusters, with each scene represented by a 3D model. The 3D scene models are then indexed using a visual vocabulary tree structure. The phone-captured image is used to retrieve the relevant scene models, then aligned with the models, and further registered to the real-world map. Our approach achieves an estimation accuracy of user location within 14 meters, viewing direction within 9 degrees, and scene location within 21 meters. Such a complete set of accurate geo-parameters can lead to various LBS applications for routing that cannot be achieved with most existing methods. In particular, we showcase three novel applications: 1) accurate self-localization, 2) collaborative localization for rendezvous routing, and 3) routing for photographing. The evaluations through user studies indicate these applications are effective for facilitating the perfect rendezvous for mobile users.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    62
    Citations
    NaN
    KQI
    []