Efficient Iridium Catalysts for Formic Acid Dehydrogenation: Investigating the Electronic Effect on the Elementary β-Hydride Elimination and Hydrogen Formation Steps.

2021 
We report herein a series of Cp*Ir complexes containing a rigid 8-aminoquinolinesulfonamide moiety as highly efficient catalysts for the dehydrogenation of formic acid (FA). The complex [Cp*Ir(L)Cl] (HL = N-(quinolin-8-yl)benzenesulfonamide) displayed a high turnover frequency (TOF) of 2.97 × 104 h-1 and a good stability (>100 h) at 60 °C. Comparative studies of [Cp*Ir(L)Cl] with the rigid ligand and [Cp*Ir(L')Cl] (HL' = N-propylpypridine-2-sulfonamide) without the rigid aminoquinoline moiety demonstrated that the 8-aminoquinoline moiety could dramatically enhance the stability of the catalyst. The electron-donating ability of the N,N'-chelating ligand was tuned by functionalizing the phenyl group of the L ligand with OMe, Cl, and CF3 to have a systematical perturbation of the electronic structure of [Cp*Ir(L)Cl]. Experimental kinetic studies and density functional theory (DFT) calculations on this series of Cp*Ir complexes revealed that (i) the electron-donating groups enhance the hydrogen formation step while slowing down the β-hydride elimination and (ii) the electron-withdrawing groups display the opposite effect on these reaction steps, which in turn leads to lower optimum pH for catalytic activity compared to the electron-donating groups.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    3
    Citations
    NaN
    KQI
    []