Molecular wave-packet dynamics on laser-controlled transition states

2016 
Understanding and controlling the electronic as well as ro-vibrational motion and, thus, the entire chemical dynamics in molecules is the ultimate goal of ultrafast laser and imaging science. In photochemistry, laser-induced dissociation has become a valuable tool for modification and control of reaction pathways and kinetics. Here, we present a pump-probe study of the dissociation dynamics of H$_2^+$ using ultrashort extreme-ultraviolet (XUV) and near-infrared (IR) laser pulses. The reaction kinematics can be controlled by varying the pump-probe delay. We demonstrate that the nuclear motion through the transition state can be reduced to isolated pairs of initial vibrational states. The dynamics is well reproduced by intuitive semi-classical trajectories on a time-dependent potential curve. From this most fundamental scenario we gain insight in the underlying mechanisms which can be applied as design principles for molecular quantum control, particularly for ultrafast reactions involving protons.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    4
    Citations
    NaN
    KQI
    []