Plasma-thermal purification and annealing of carbon nanotubes

2012 
Abstract We have developed a very fast and entirely gas-phase based purification technique for carbon nanotubes (CNT) that allows removing metal and metal oxide impurities with high effectiveness. CNT agglomerates from chemical vapor deposition (CVD) synthesis which contained carbon encapsulated catalysts were injected into an atmospheric plasma torch. Very high heating rates allow for quasi-instantaneous vaporization of catalyst particles. This way, metal vapors are hyposized to break mechanically instable encapsulations and effuse from incomplete ones faster than thermally induced graphitization stabilizes such particle encapsulations. The ash content of multi-walled (MW) CNT samples was reduced to less than 15% of the initial value within a few milliseconds. Also the metal content of single-walled (SW) CNT agglomerates was significantly reduced. Repeated injection of CNT agglomerates into the plasma torch resulted in higher-purity products of improved structural integrity and increased oxidation resistance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    43
    Citations
    NaN
    KQI
    []