Understanding the physics of ELM pacing via vertical kicks in JET in view of ITER

2016 
Experiments on JET, with both the previous carbon wall (JET-C) and the new Be/W wall (JET-ILW), have demonstrated the efficacy of using a fast vertical plasma motion (known as vertical kicks in JET) for active ELM control. In this paper we report on a series of experiments that have been recently conducted in JET-ILW with the goal of further improving the physics understanding of the processes governing the triggering of ELMs via vertical kicks. This is a necessary step to confidently extrapolate this ELM control method to ITER. Experiments have shown that ELMs can be reliably triggered provided a minimum vertical plasma displacement and velocity is imposed. The magnitude of the minimum displacement depends on the plasma parameters, being smaller for higher pedestal temperatures and lower collisionalities, which is encouraging in view of ITER. Modelling and stability analysis suggest that a localized current density induced by the vertical plasma movement close to the separatrix plays a major role in the ELM triggering mechanism, which is consistent with the experimental observations. The implications of these results for the extrapolation of this ELM control scheme to ITER are discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    26
    Citations
    NaN
    KQI
    []