Pathways for Single-Shot All-Optical Switching of Magnetization in Ferrimagnets

2020 
Single-shot helicity-independent all-optical switching of magnetization in ferrimagnets represents the fastest known approach for deterministic data recording. Recently, it was shown that 15-ps-long optical pulses could suffice in triggering the magnetic switching in certain $\mathrm{Gd}\text{\ensuremath{-}}\mathrm{Fe}\text{\ensuremath{-}}\mathrm{Co}$ alloys, generating enormous controversy about the underlying mechanism. Here, we demonstrate how the exact composition of the ferrimagnet affects the kinetics of the reversal process and facilitates the use of thermal pulses with a duration spanning all relevant timescales within the nonadiabatic limit. By modelling a generic ferrimagnet as two coupled macrospins, we show that the magnetization reversal can occur via distinctly different pathways, depending on the duration of the heater. We experimentally reveal that pulses with a duration below and above a critical pulse width respectively enable and disable the capability of all-optical magnetization switching in $\mathrm{Gd}\text{\ensuremath{-}}\mathrm{Fe}\text{\ensuremath{-}}\mathrm{Co}$ alloys, and that modest change of the alloy composition leads to drastic variation of the critical pulse width, by almost 2 orders of magnitude. Our interpretation and results resolve an urgent and outstanding technologically relevant controversy, and provide crucial but previously overlooked guidelines for how to engineer deterministic all-optical switching of magnetization in suitable ferrimagnets.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    31
    Citations
    NaN
    KQI
    []