Time-dependence of biological activity induced by covalent insulin-receptor complexes in rat adipocytes.

1985 
Lipogenesis in isolated adipocyte preparations is stimulated when photosensitive insulin derivatives are attached covalently to specific receptors. This response was compared quantitatively with that to reversibly associated insulin, and it was shown that both covalent and reversible insulin-receptor complexes behave very similarly. The extent of stimulation of lipogenesis was studied as a function of time. Cells were incubated in buffer for various times before addition to vials containing 0 (basal) or 10 ng of monocomponent insulin/ml (maximal) and [U-3H]glucose. After 60 min, the toluene-soluble [3H]lipids were measured. The maximal stimulation induced by reversibly bound insulin was virtually constant over a period of 4 h. In contrast, adipocytes to which N alpha B2-(2-nitro-4-azidophenylacetyl)-des-PheB1-insulin had been covalently attached at the start of the experiment showed a loss of stimulation with time when incubated at 37 degrees C. This loss was decreased in the presence of lysosomotropic agents such as chloroquine at concentrations (approx. 200 microM) that had very little or no effect on the basal and maximal lipogenesis rates. A simple method was used to transform the measured rate of loss of stimulation into a rate of loss of effective units. A half-time of 80 min was calculated for the effective covalent insulin-receptor units in adipocytes at 37 degrees C at pH 7.4. This is very close to values reported by others for the internalization of covalent complexes in these cells, suggesting that this may be the causative event for the deactivation of the insulin-receptor unit. The inhibitory effect of chloroquine on the deactivation may indicate that the insulin-receptor complex can function even after internalization.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []