First-principles study and experimental characterization of metal incorporation in germanium telluride

2020 
Germanium telluride is a well-known phase change material (PCM) used in non-volatile memory cells and radio frequency switches. Controlling the properties of GeTe for improved PCM device performance has sometimes been achieved by doping and/or alloying with metals, often at concentrations greater than 10 at. % and using non-equilibrium methods. Since switching PCMs between the low-resistance crystalline and high-resistance amorphous states requires a heating cycle, the stability of metal-incorporated GeTe ( Ge 0.5 − x M x Te 0.5) films is also critical to practical implementation of these materials in electronic and optoelectronic devices. In this work, we use both density-functional theory and experimental characterization methods to probe the solubility and critical properties of Ge 0.5 − x M x Te 0.5 films. Using first-principles calculations, we determine the enthalpy of formation for GeTe with 2.08, 4.17, and 6.25 at. % of Cu, Fe, Mn, Mo, and Ti and show trends between the stability of the Ge 0.5 − x M x Te 0.5 systems and the atomic position, composition, and distribution of the metal atoms in the GeTe matrix. Out of all the studied systems, Mo was the only metal to cluster within GeTe. Analysis of the Ge–Te bond lengths and volumes of the Ge 0.5 − x M x Te 0.5 supercells shows that increasing the atomic concentration (2.08, 4.17, 6.25 at. %) of the different metals causes varied distortions of the crystal structure of GeTe that are accompanied by significant changes in the projected density of states. Computational predictions concerning metal solubility and the effect of metal incorporation on critical properties of GeTe are compared to experimental results in the literature (Cu, Mn, Mo, and Ti) and to transmission electron microscopy and transport data from newly characterized co-sputtered Ge 0.5 − x Fe x Te 0.5 films. The computational predictions of decreasing solubility (Mn > Cu, Fe > Ti, Mo) shows good agreement with experimental observations (Mn, Cu > Fe > Ti, Mo), and Ge 0.5 − x Fe x Te 0.5 films exhibited increased crystallization temperatures from pure GeTe.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    2
    Citations
    NaN
    KQI
    []