Stable Phosphorus Passivated SiO2/4H-SiC Interface Using Thin Oxides

2014 
The NO (nitric oxide) passivation process for 4H-SiC MOSFETs (silicon carbide metal-oxide-semiconductor filed effect transistors) effectively reduces the interface trap density and increases the inversion channel mobility from less that 10 to around 35cm2/V.s, only 5% of the bulk mobility. Recent results on the phosphorous passivation of the SiO2/4H-SiC interface have shown that it improves the mobility to about 90 cm2/V.s. Phosphorous passivation converts oxide (SiO2) into phosphosilicate glass (PSG) which is a polar material and results in device instabilities under abias-temperature stress (BTS) measurements. To limit the polarization effect, a new thin PSG process has been developed. The interface trap density of 4H-SiC-MOS capacitors using this process is as low as 3x1011cm-2 eV-1. BTS results on MOSFETs have shown that the thin PSG devices are as stable as NO passivated devices with mobility around 80 cm2/V.s.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    1
    Citations
    NaN
    KQI
    []