Oxidative stress in the lung – The essential paradox

2018 
Abstract As eukaryotic life evolved, so too did the need for a source of energy that meets the requirements of complex organisms. Oxygen provides this vast potential energy source, but the same chemical reactivity which provides this potential also can have detrimental effects. The lung evolved as an organ that can efficiently promote gas exchange for the entire organism but as such, the lung is highly susceptible to its external environment. Oxygen can be transformed through both enzymatic and non-enzymatic processes into reactive oxygen species (ROS) and reactive nitrogen species (RNS), which can lead to protein, lipid, and DNA damage. Under normal conditions ROS/RNS concentrations are minimized through the activity of antioxidants located both intracellularly and in the epithelial lining fluid of the lung. Oxidative stress in the lung results when the antioxidant capacity is overwhelmed or depleted through external exposures, such as altered oxygen tension or air pollution, or internally. Internal sources of oxidative stress include systemic disease and the activation of resident cells and inflammatory cells recruited in response to an exposure or systemic response. Pulmonary responses to oxidative stress include activation of oxidases, lipid peroxidation, increases in nitric oxide, and autophagy. These internal and external exposures with the subsequent pulmonary responses contribute to development of diseases directly linked to oxidative stress. These include asthma, COPD, and lung cancers. While the vulnerability of the lung to oxidative stress is acknowledged, few effective preventative strategies or therapeutics are currently available.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    72
    References
    33
    Citations
    NaN
    KQI
    []