Effects of anti-transpirants on transpiration and energy use in greenhouse cultivation

2008 
Greenhouse production in North-West Europe consumes a lot of energy. The energy is needed for heating the greenhouse and controlling air humidity. Transpiration of a crop increases the energy use. The aim of this study was to explore the possibilities for the application of anti-transpirants to save energy by reducing crop transpiration without reducing crop yield. Literature and model calculations were used to explore the effects of increased leaf resistances on transpiration, energy use and production in tomato, cucumber and sweet pepper. In literature a large number of compounds are described that act as anti-transpirant. A two to five fold increase in stomatal resistance can be expected from treatment with anti-transpirants. Model calculations for tomato showed that increasing the stomatal resistance (from 2 to 5 times) throughout the whole year leads to substantial yield reduction: crop growth was reduced by 6-19%, while transpiration by 15-42% and consequently energy use by 9-16%. However, in the winter period (beginning of October/end of March) the growth reduction was only 0.3-1.3%, as in this period light levels are low and CO2 concentrations in the greenhouse are relatively high. Raising the (maximum) set-point for CO2 concentration from 1000 ppm to 3000 ppm, increased the actual concentration during day-time from 892 to 1567 ppm (flue gases were the only source of CO2). When the application of anti-transpirants was combined with raising the set-point for CO2 concentration, the model showed no growth reduction due to the application of anti-transpirants, while the annual energy use was reduced by 5.5-10.4% in tomato. Similar results were obtained for sweet pepper (5-9% energy saving) and cucumber (2-5% energy saving). These model calculations show that increasing stomatal resistance by anti-transpirants during the winter period may potentially save a substantial amount of energy (2-10%), without affecting yield of vegetables such as tomato, cucumber and sweet pepper. It is concluded that increasing the stomatal resistance by anti-transpirants in wintertime may lead to substantial energy saving due to the reduced transpiration and need for humidity management, without yield reduction. Such model calculations are useful to analyse beforehand the chances of a good combination of energy saving and yield loss of a possible application. Experiments will be needed to verify the results
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    1
    Citations
    NaN
    KQI
    []