Micro Air-Pulse Spatial Deformation Spreading Characterizes Degree of Anisotropy in Tissues

2020 
In optical coherence elastography (OCE), air-pulse stimulation has been widely used to produce propagation of mechanical waves for elastic characterization of tissues. In this paper, we propose the use of spatial deformation spreading (SDS) on the surface of samples produced by air-pulse stimulation for the OCE of transverse isotropic tissues. Experiments in isotropic tissue-mimicking phantoms and anisotropic chicken tibialis muscle were conducted using a spectral-domain optical coherence tomography system synchronized with a confocal air-pulse stimulation. SDS measurements were compared with wave speeds values calculated at different propagation angles. We found an approximately linear relationship between shear wave speed and SDS in isotropic phantoms, which was confirmed with predictions made by the numerical integration of a wave propagation model. Experimental measurements in chicken muscle show a good agreement between SDS and surface wave speed taken along and across the axis of symmetry of the tissues, also called degree of anisotropy. In summary, these results demonstrated the capabilities of SDS produced by the air-pulse technique in measuring the shear elastic anisotropy of transverse isotropic tissues.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    0
    Citations
    NaN
    KQI
    []