Estimation of Vertical, Lateral, and Longitudinal Tire Forces in Four-Wheel Vehicles Using a Delayed Interconnected Cascade-Observer Structure

2019 
The knowledge of tire-ground interaction forces is valuable for intelligent vehicles technologies. However, tire forces transducers are expensive and not suitable for ordinary passenger cars. An alternative is to estimate these forces using less sophisticated sensors. This paper presents a new delayed interconnected cascade-observer structure to reconstruct the forces acting on each tire in all directions. The addition of delayed interconnections overcomes the mutual dependence problem in the cascade estimator. Observers are developed based on nonlinear vehicle dynamic models. The Extended Kalman Filter and the Unscented Kalman Filter algorithms are applied for comparison purposes. Two experimental data are used to validate the estimator: a driving in ordinary urban streets and a high-speed slalom maneuver in a banked road. The results are compared with force measurements obtained with transducers and with an existing estimator from the literature.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    9
    Citations
    NaN
    KQI
    []