Optimising canola establishment and yield in south-eastern Australia with hybrids and large seed

2016 
April sowing of canola is considered optimal for grain yield in many regions of Australia; however, there is often insufficient rainfall in April to sow seed into moisture at the ideal depth of 15–30 mm. We report a series of experiments that investigated the seed characteristics (cultivar type and seed size) that would facilitate successful canola emergence from relatively deep sowing (>30 mm). Ten canola cultivar by sowing depth experiments, each with three hybrid and three open-pollinated cultivars, found hybrid cultivars were able to maintain higher emergence rates and grain yield compared with open-pollinated cultivars from deep sowing. Further investigations in the glasshouse showed that the emergence advantage of the hybrid cultivars was largely due to their inherently large seed size, as increased seed size also improved emergence of open-pollinated canola. Early biomass accumulation also improved with larger seeds. In a field experiment, larger seed size of both hybrid and open-pollinated canola increased early biomass accumulation and final grain yield. Simulation modelling in New South Wales demonstrated the importance of timely sowing of canola, as delayed sowing caused a larger reduction in grain yield than reduced plant population. Although ‘moisture-seeking’ (placing seed into moist soil below a layer of dry soil) reduced the emergence rate of canola, the reduction could be offset by planting large seed (>2 mm diameter). This practice of ‘moisture-seeking’ large-seeded canola should be considered as a strategy to improve the timeliness of establishment and subsequent grain yield of canola when rainfall for crop establishment is marginal yet there is moisture available deeper in the seedbed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    17
    Citations
    NaN
    KQI
    []