Long-range quantum coherence of the photosystem 2 complexes in living cyanobacteria

2020 
Abstract The first step in photosynthesis is an extremely efficient energy transfer mechanism, which is difficult to be explained by classical short-range energy migration (“hopping”) and led to the debate to which extent quantum coherence is involved in the energy transfer between the photosynthetic pigments. Embedding living cyanobacteria between the mirrors of an optical microresonator and using low intensity white light irradiation we observe vacuum Rabi splitting in the transmission and fluorescence spectra as a result of strong light matter coupling of the chlorophyll and the resonator modes. The Rabi-splitting scales with the number of chlorophyll a pigments involved in coherent coupling indicating forming a polaritonic state which is delocalized over the entire cyanobacterial thylakoid system, down to the single photon level. Our data provide evidence that a delocalized polaritonic state is the basis of the extremely high energy transfer efficiency under natural conditions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    1
    Citations
    NaN
    KQI
    []