Magnetoplasmonic properties of perpendicularly magnetized $[$Co/Pt$]_{N}$ nanodots.

2019 
We demonstrate a ten-fold resonant enhancement of magneto-optical effects in perpendicularly magnetized $[$Co/Pt$]_{N}$ nanodots mediated by the excitation of optimized plasmon modes. Two magnetoplasmonic systems are considered; square arrays of $[$Co/Pt$]_{N}$ nanodots on glass and identical arrays on a Au/SiO2 bilayer. On glass, the optical and magneto-optical spectra of the nanodot arrays are dominated by the excitation of a surface lattice resonance (SLR), whereas on Au/SiO${}_{2}$, a narrow surface plasmon polariton (SPP) resonance tailors the spectra further. Both the SLR and SPP modes are magneto-optically active leading to an enhancement of the Kerr angle. We detail the dependence of optical and magneto-optical spectra on the number of Co/Pt bilayer repetitions, the nanodot diameter, and the array period, offering design rules on how to maximize and spectrally tune the magneto-optical response of perpendicularly magnetized $[$Co/Pt$]_{N}$ nanodots.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []