Two-scale structural mechanical modeling of long fiber reinforced thermoplastics

2015 
Abstract The mechanical properties of long fiber reinforced thermoplastics (LFT), which highly depend on the fiber orientation induced through manufacturing on a direct LFT line, are predicted for compression molded rectangular plates. Therefore, three two-scale structural mechanical simulation schemes are applied and discussed: a two-step approach, the Mori-Tanaka scheme and the self-consistent method. Fiber orientation tensors based on measured micro computed tomography data of selected samples as well as on filling simulations are used for the determination of mechanical properties, as e.g. the storage modulus. The results have been compared with dynamic mechanical analysis measurements of tensile specimens. The influence of the initial strand position on the effective mechanical properties of the plate and the variation of those are examined.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    17
    Citations
    NaN
    KQI
    []