The use of biochar for controlling acid mine drainage through the inhibition of chalcopyrite biodissolution

2020 
Abstract Although chalcopyrite biodissolution plays an important role in the formation of acid mine drainage (AMD), the control of AMD through inhibiting the biodissolution of chalcopyrite has not been studied until now. In order to fill this knowledge gap, a novel method for inhibiting chalcopyrite biodissolution using biochar was proposed and verified. The effects of biochar pyrolysis temperature and biochar concentration on the inhibition of chalcopyrite biodissolution in the presence of Acidithiobacillus ferrooxidans (A. ferrooxidans) were studied. The results indicate that biochar significantly inhibited chalcopyrite biodissolution, thus reducing the number of copper and iron ions and quantity of acid released. In turn, this suggests that AMD generation was suppressed under these conditions. Biochar pyrolyzed at 300 °C (Biochar-300 °C) was the most effective at inhibiting chalcopyrite biodissolution and reduced its biodissolution rate by 17.7%. A suitable concentration of biochar-300 °C enhanced its inhibition of chalcopyrite biodissolution. The optimal concentration of biochar-300 °C for inhibiting chalcopyrite biodissolution was 3 g/L. Biodissolution results, cyclic voltammetry, mineral surface morphology, mineralogical phase, and elemental composition analyses reveal that biochar inhibited the biodissolution of chalcopyrite by promoting the formation of passivation layer (jarosite and Sn2−/S0) and adsorbing bacteria.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    7
    Citations
    NaN
    KQI
    []