Expression of VEGF-A Signaling Pathway in Cartilage of ACLT-Induced Osteoarthritis Mouse Model

2021 
Anterior cruciate ligament transection surgery (ACLT)-induced OA model was often used to investigate the molecular mechanism of knee osteoarthritis (KOA). Researches have shown that vascular endothelial growth factor (VEGF) played an important role in OA. The present study aimed to investigate the pathological changes after ACLT surgery and reveal the expression characteristics of the VEGF-A/VEGFR2 signaling pathway in this model. Moderate KOA model was established by ACLT, and 1, 2, 4, 8, and 12 weeks after surgery, hematoxylin-eosin (HE) and Safranin-O(S-O) staining were used to detect the pathological changes in mouse knee cartilage, and the matrix biomarkers A Disintegrin and Metalloproteinase with Thrombospondin Motifs 5(ADAMTS5), Collagen II (COL-II) were detected using immunohistochemistry (IHC), CD31 was detected by immunofluorescence (IF) to show the vascular invasion in cartilage, and proteins expression of VEGF-A pathway were detected by Western blot (WB). Meanwhile, the inflammatory biomarkers cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in cartilage were detected by WB. ACLT surgery can lead to degeneration of cartilage in mice, and the characteristics of the lesion were time-dependent. The ADAMTS5-positive cells increased while COL-II decreased in OA cartilage with time, and new blood vessels labeled by CD31 can be seen from 1 week in OA cartilage, and increased in 8 and 12 weeks. The expression of VEGF-A, VEGFR2, COX-2, and iNOS were higher than control groups, which were basically consistent with the degree of osteoarthritis. The degenerative degree of articular cartilage was time-dependent; angiogenesis and inflammation were important pathological changes of cartilage in KOA. The expression of the VEGF-A/VEGFR2 signaling pathway was basically correlated with the degree of KOA.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    1
    Citations
    NaN
    KQI
    []