Development of under-ice stratification in Himmerfjärden bay, North-Western Baltic proper, and their effect on the phytoplankton spring bloom

2018 
Abstract Seasonal sea ice cover reduces wind-driven mixing and allows for under-ice stratification to develop. These under-ice plumes are a common phenomenon in the seasonal sea ice zone. They stabilize stratification and concentrate terrestrial runoff in the top layer, transporting it further offshore than during ice-free seasons. In this study, the effect of sea ice on spring stratification is investigated in Himmerfjarden bay in the NW Baltic Sea. Distinct under-ice plumes were detected during long ice seasons. The preconditions for the development of the under-ice plumes are described as well as the typical spatial and temporal dimensions of the resulting stratification patterns. Furthermore, the effect of the under-ice plume on the timing of the onset and the maximum of the phytoplankton spring bloom were investigated, in terms of chlorophyll-a (Chl-a) concentrations. At the head of the bay, bloom onset was delayed on average by 18 days in the event of an under-ice plume. However, neither the maximum concentration of Chl-a nor the timing of the Chl-a maximum were affected, implying that the growth period was shorter with a higher daily productivity. During this period from spring bloom onset to maximum Chl-a, the diatom biomass was higher and Mesodinium rubrum biomass was lower in years with under-ice plumes compared to years without under-ice plumes. Our results thus suggest that the projected shorter ice seasons in the future will reduce the probability of under-ice plume development, creating more dynamic spring bloom conditions. These dynamic conditions and the earlier onset of the spring bloom seem to favor the M . rubrum rather than diatoms.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    9
    Citations
    NaN
    KQI
    []