Routing emission with a multi-channel nonreciprocal waveguide

2019 
In this work, we present a multi-channel nonreciprocal waveguide, which is composed of a gyrotropic-bounded dielectric on the bottom and a plasmonic material on the top. The Lorentz reciprocity in the time-invariant system is broken when applying an external static magnetic field on the gyrotropic material. The nonreciprocal emission from the dipole source located in the center of the waveguide is observed in extended waveband channels. The proposed heterostructure serves as a photonic dichroism once the dielectric is replaced by a nonlinear material. The associated second harmonic generated in the nonlinear process can be separated from the fundamental signal under proper magnetic field intensity. Our findings may provide significant guidance for designing nonreciprocal photonic devices with superiorities of a tunable waveband, multiple channels, and small footprint.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    5
    Citations
    NaN
    KQI
    []