Analysis of mutant origin recognition complex with reduced ATPase activity in vivo and in vitro

2008 
In eukaryotes, ORC (origin recognition complex), a six-protein complex, is the most likely initiator of chromosomal DNA replication. ORC belongs to the AAA + (ATPases associated with a variety of cellular activities) family of proteins and has intrinsic ATPase activity derived from Orc1p, one of its subunits. To reveal the role of this ATPase activity in Saccharomyces cerevisiae (baker9s yeast) ORC, we mutated the Orc1p sensor 1 and sensor 2 regions, which are important for ATPase activity in AAA + proteins. Plasmid-shuffling analysis revealed that Asn 600 , Arg 694 and Arg 704 are essential for the function of Orc1p. In yeast cells, overexpression of Orc1R694Ep inhibited growth, caused inefficient loading of MCM (mini-chromosome maintenance complex of proteins) and slowed the progression of S phase. In vitro , purified ORC-1R [ORC with Orc1R694Ep (Orc1p Arg 694 →Glu mutant)] has decreased ATPase activity in the presence or absence of origin DNA. However, other activities (ATP binding and origin DNA binding) were indistinguishable from those of wild-type ORC. The present study showed that Arg 694 of the Orc1p subunit is important for the ATPase activity of ORC and suggests that this ATPase activity is required for efficient MCM loading on to origin DNA and for progression of S phase.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    7
    Citations
    NaN
    KQI
    []