Accuracy of intraocular lens formulas using total keratometry in eyes with previous myopic laser refractive surgery.

2020 
OBJECTIVES This comparative study aimed to determine if total keratometry (TK) from IOLMaster 700 could be applied to conventional formulas to perform IOL power calculation in eyes with previous myopic laser refractive surgery, and to evaluate their accuracy with known post-laser refractive surgery formulas. METHODS Sixty-four eyes of 49 patients with previous myopic laser refractive surgery were evaluated 1 month after cataract surgery. A comparison of the prediction error was made between no clinical history post-laser refractive surgery formulas (Barrett True-K, Haigis-L, Shammas-PL) and conventional formulas (EVO, Haigis, Hoffer Q, Holladay I, and SRK/T) using TK values obtained with the optical biometer IOLMaster 700 (Carl Zeiss Meditec), as well as Barrett True-K with TK. RESULTS The mean prediction error was statistically different from zero for Barrett True-K, Barrett True-K with TK, Haigis-L, Shammas-PL, and Holladay I with TK. The mean absolute error (MAE) was 0.424, 0.671, 0.638, 0.439, 0.408, 0.424, 0.479, 0.647, and 0.524, and median absolute error (MedAE) was 0.388, 0.586, 0.605, 0.298, 0.294, 0.324, 0.333, 0.438, and 0.377 for Barrett True-K, Haigis-L, Shammas-PL, Barrett True-K TK, EVO with TK, Haigis with TK, Hoffer Q with TK, Holladay I with TK, and SRK/T with TK, respectively. EVO TK followed by Barrett True-K TK and Haigis TK achieved the highest percentages of patients with absolute prediction error within 0.50 and 1.00 D (68.75%, 92.19%, and 64.06%, 92.19%, respectively) CONCLUSIONS: Formulas combined with TK achieve similar or better results compared to existing no-history post-myopic laser refractive surgery formulas.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    5
    Citations
    NaN
    KQI
    []