Exciton splitting in semiconducting carbon nanotubes in ultrahigh magnetic fields above 300 T

2015 
In high magnetic fields, the exciton absorption spectrum of a semiconducting single-walled carbon nanotube splits as a result of Aharonov-Bohm magnetic flux. A magnetic field of 370 T, generated by the electromagnetic flux compression destructive pulsed magnet-coil technique, was applied to single-chirality semiconducting carbon nanotubes. Using streak spectroscopy, we demonstrated the separation of the independent band-edge exciton states at the $K$ and ${K}^{\ensuremath{'}}$ points of the Brillouin zone after the mixing of the dark and bright states above 150 T. These results enable a quantitative discussion of the whole picture of the Aharonov-Bohm effect in single-walled carbon nanotubes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    7
    Citations
    NaN
    KQI
    []