Simulation of laser-induced rectification in a nano-scale diode

2018 
Time-dependent density functional theory is utilized to simulate an asymmetrical jellium model, representing a nano-scale vacuum-tube diode comprised of bulk lithium. A sharp tip on one end of the jellium model allows for enhanced field emission upon interaction with an external laser field, leading to a preferential net current direction. This is verified by comparing the rate of electron transfer between the effective anode and cathode tips for both the diode jellium model and a symmetric cylinder jellium shape for various laser phase parameters. This rate of transfer is shown to significantly increase with smaller separation distances. With stronger laser intensities, this rate similarly increases but levels off as local near-field enhancements become negligible.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    0
    Citations
    NaN
    KQI
    []